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The effective densities of plate- and membrane-type acoustic metamaterials (AMMs) without mass

attached are studied theoretically and numerically. Three models, including the analytic model

(based on the plate flexural wave equation and the membrane wave equation), approximate model

(under the low frequency approximation), and the finite element method (FEM) model, are first

used to calculate the acoustic impedance of square and clamped plates or membranes. The effective

density is then obtained using the resulting acoustic impedance and a lumped model. Pressure trans-

mission coefficients of the AMMs are computed using the obtained densities. The effect of the loss

from the plate is also taken into account. Results from different models are compared and good

agreement is found, particularly between the analytic model and the FEM model. The approximate

model is less accurate when the frequency of interest is above the first resonance frequency of the

plate or membrane. The approximate model, however, provides simple formulae to predict the

effective densities of plate- or membrane-type AMMs and is accurate for the negative density fre-

quency region. The methods presented in this paper are useful in designing AMMs for manipulating

acoustic waves. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4960590]

[MRH] Pages: 908–916

I. INTRODUCTION

The theoretical and experimental investigations of

acoustic metamaterials (AMMs) have opened up numerous

fascinating possibilities in recent years,1,2 such as negative

refraction,3,4 subwavelength imaging5 and cloaking.6 One of

the crucial requirements for the realization of these applica-

tions is to have negative effective parameters. For instance,

a great amount of effort has been made to design a material

that exhibits negative density. These AMMs have been used

to achieve superlensing,7,8 partial focusing,9,10 cancelling

out aberrating layers,11 and noise reduction.12–14 Liu et al.
pioneered the realization of locally resonant acoustic meta-

materials with negative density in 2000 (Ref. 15). This struc-

ture consisted of a dense core with a soft elastic coating,

both embedded in a matrix material. Yang et al. proposed

a different type of locally resonant materials by attaching

a small mass to an elastic membrane.16 Near the anti-

resonance frequency, the effective density was shown to be

negative and the sound transmission can be orders of magni-

tude lower than that given by the mass law. The effective

density was reported to be negative over a narrow band.

Naify et al. studied the influence of the membrane and mass

properties using the finite element method (FEM) and vali-

dated the results experimentally.17 In their later work, the

behavior of multiple units with the effects of non-uniform

mass distribution and frame compliance were examined.18

For the typical configuration of locally resonant membrane-

type AMMs, although the attached mass serves as a means

to tuning the eigenfrequencies, it introduces negative density

in a rather narrow-band frequency and the associated damp-

ing could be strong.19 It was verified later that the tension

from the membrane alone is able to give rise to negative den-

sity and the non-resonance membrane-type AMMs were

demonstrated by Lee et al.20,21 Shortly after, it was discov-

ered that clamped plates can produce similar results.22

The idea of using membranes or plates without mass

attached for achieving negative density has attracted a lot of

attention due to the simple structure and outstanding effective-

ness. The effective density of membrane- and plate-type AMMs

is negative below a cutoff frequency (the first resonance fre-

quency of the plate or membrane),22 which means it is a broad-

band phenomenon if designed properly. Another intriguing

property of membrane- or plate-type AMMs without mass

attached is that the effective density is near zero around the cut-

off frequency,23 implying that the phase undergoes little changes

within the AMMs. It was demonstrated that the density-near-

zero metamaterial can be used in extraordinary transmis-

sion,24,25 sound tunneling,26 and subwavelength imaging.26,27

To use plate- or membrane-type AMMs for designing

devices controlling acoustic waves, it is critically important

to know exactly the effective density for a given AMM

structure. For example, in designing complimentary metama-

terials (CMMs),11 the effective density needs to be tuned to

a certain value in order to perfectly cancel out the unwanted

aberrating layer. Although the effective density of an AMM

based on circular plates can be calculated using a lumped

model,28 no explicit derivation of effective density has been

reported for square membranes and plates, which werea)Electronic mail: yjing2@ncsu.edu

908 J. Acoust. Soc. Am. 140 (2), August 2016 VC 2016 Acoustical Society of America0001-4966/2016/140(2)/908/9/$30.00

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  152.14.115.167 On: Mon, 19 Sep 2016 18:00:39

http://dx.doi.org/10.1121/1.4960590
mailto:yjing2@ncsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4960590&domain=pdf&date_stamp=2016-08-01


used in recent studies.9,11 This paper aims to theoretically

and numerically investigate the membrane- and plate-type

AMMs without mass attached. The acoustic impedances of

square plates and membranes under uniform acoustic pres-

sure are first computed. This is accomplished by three differ-

ent approaches: analytic models, approximate models, and

FEM. The effective density can be then estimated for plate-

and membrane-type AMMs using the lumped model. The

paper is structured as follows: in Sec. II, the acoustic imped-

ance of a plate is evaluated by three different methods and

the corresponding effective density and sound transmission

of the plate-type AMM are obtained afterwards. In Sec. III, a

similar analysis is carried out for membrane-type AMMs.

Section IV concludes the paper.

II. PLATE-TYPE ACOUSTIC METAMATERIALS
WITHOUT MASS ATTACHED

A. Analytic model for the acoustic impedance
of a square, clamped plate

Although this section focuses on square plates as they

have been used recently for building two dimensional (2D)

negative density CMMs,11 the analytic model presented here

is generic and can be readily used for rectangular plates. The

analytic approach presented here is similar to that in Ref. 29,

in which the plate vibration under point forces, couples and

piezomoments were studied. For a thin, clamped plate under

a net sound pressure Pðx; y; tÞ, the governing equation of the

transverse displacement Wðx; y; tÞ is the flexural wave equa-

tion which reads

Dr4W x; y; tð Þ þ qh
@2W x; y; tð Þ

@t2
¼ P x; y; tð Þ; (1)

where D is the flexural rigidity and D ¼ Eh3=12ð1� v2Þ;
E, v, q; and h are the Young’s modulus, Poisson’s ratio, den-

sity and thickness of the plate, respectively.

Assuming harmonic excitations with angular frequency

x, Pðx; y; tÞ, and Wðx; y; tÞ can be written as

Pðx; y; tÞ ¼ pðx; yÞejxt; Wðx; y; tÞ ¼ wðx; yÞejxt; (2)

pðx; yÞ and wðx; yÞ can be expanded by eigenfunctions as

pðx; yÞ ¼
X1
m¼1

X1
n¼1

pmnumnðx; yÞ;

wðx; yÞ ¼
X1
m¼1

X1
n¼1

wmnumnðx; yÞ; (3)

where umnðx; yÞ can be further decomposed using the separation

of variables, i.e., umnðx; yÞ ¼ XmðxÞYnðyÞ. XmðxÞ and YnðyÞ are

chosen to be the same as the eigenfunctions for a beam clamped

on both ends to satisfy the clamped boundary condition (the

transverse displacement and slope of plate are zero) and the

equation of motion for the plate. They are given by

Xm xð Þ ¼ J
kmx

a

� �
� J kmð Þ

H kmð Þ

� �
H

kmx

a

� �
;

Yn yð Þ ¼ J
kny

a

� �
� J knð Þ

H knð Þ

� �
H

kny

a

� �
; (4)

where a is the width of the square plate, JðuÞ ¼ coshðuÞ
�cosðuÞ, HðuÞ ¼ sinhðuÞ � sinðuÞ. km or kn satisfies the

equation coshðkÞ cosðkÞ ¼ 1.

Combining Eqs. (2)–(4), Pðx; y; tÞ and Wðx; y; tÞ can

be obtained and substituted into Eq. (1), wmn can be then

written as

wmn ¼

ða

0

ða

0

p x; yð ÞXmYndxdy

D I1I2 þ 2I3I4 þ I5I6ð Þ � qhx2I2I6

; (5)

where I1 ¼
Ð a

0
Xð4Þm Xmdx, I2 ¼

Ð a
0

Y2
ndy, I3 ¼

Ð a
0

X00mXmdy, I4

¼
Ð a

0
Y00n Yndy, I5 ¼

Ð a
0

Yn
ð4ÞYndy, I6 ¼

Ð a
0

Xm
2dx; and the

superscript in “()” indicates the order of the derivative and

double prime is the second order derivative.

At the resonance frequencies, wmn reaches infinity in the

absence of damping. The resonance angular frequencies can

thus be obtained by setting the denominator of Eq. (5) to

zero, which leads to

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D I1I2 þ 2I3I4 þ I5I6ð Þ

qhI2I6

s
: (6)

The acoustic impedance of a vibrating plate is defined as

Zam ¼

ða

0

ða

0

P x; y; tð Þdxdy

�V tð Þa4
¼

ða

0

ða

0

P x; y; tð Þdxdy

@ �W tð Þ
@t

a4

¼

ða

0

ða

0

p x; yð Þdxdy

jx�wa4
; (7)

where �V , �W , and �w are the average velocity, transverse

displacement, and magnitude of transverse displacement,

respectively.Consider a subwavelength size waveguide

[Fig. 1(a)], plane waves with normal incidence angle can be

assumed. pðx; yÞ is, therefore, a constant p0 (uniform distri-

bution) and Eq. (7) becomes

Zam ¼
1

jx
ða

0

ða

0

X1
m¼1

X1
n¼1

ða

0

ða

0

XmYndxdy

D I1I2 þ 2I3I4 þ I5I6ð Þ � qhx2I2I6

XmYn

2
64

3
75dxdy

: (8)
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Equation (8) is computed numerically using Matlab.

Specifically, the Simpson’s 3/8 rule is applied to approxi-

mate the integrals.

B. Approximate model for the acoustic impedance
of a square, clamped plate

The acoustic impedance Zam of a plate can be divided

into two parts at low frequencies (frequency around or below

the first resonance frequency of the plate). They are the

acoustic compliance (Cam) and acoustic mass (Mam) in the

lumped model28 [Fig. 1(b)]. In other words,

Zam ¼
1

jxCam
þ jxMam: (9)

When the frequency of interest is significantly below the

first resonance frequency of the plate, the acoustic compli-

ance term will dominate and the acoustic mass term can be

ignored. Therefore, Cam can be determined by computing

Zam at an extremely low frequency using Eq. (9). Similar

to circular plates, it is assumed that the acoustic compliance

is associated with the dimensions and flexural rigidity.28

By equating the unit of Zam (kg=m4s) and the unit of the

term containing Cam (1=jxCam) in Eq. (9), the unit of Cam is

calculated to be m4s2=kg. Consequently, the power for

D (kgm2=s2) must be �1 and the power for a (m) must be 6.

The formula for Cam is found to be

Cam ¼ 3:73� 10�4 a6

D
: (10)

Note that Zam should be zero at the first resonant fre-

quency (x11) of the plate. Hence, Mam can be analytically

obtained from Eq. (9) as

Mam ¼
1

x11
2Cam

; (11)

where x11 ¼ ðC0=a2Þ
ffiffiffiffiffiffiffiffiffiffiffi
D=qh

p
and C0 is a constant.30

Substituting Eq. (10) into Eq. (11) yields

Mam ¼
1

3:73� 10�4C0
2

qh

a2
¼ C1

qh

a2
: (12)

To determine the constant C1, x11 is first computed

using the analytic model [Eq. (6)] for a random plate, Mam

can then be calculated using Eq. (11) since both Cam and x11

are known. Finally, C1 is determined from Eq. (12). Since

C1 is independent of the dimensions and properties of the

plate, the obtained C1 is general and it is found that

Mam ¼ 2:06
qh

a2
: (13)

Equations (10) and (13) provide the acoustic compliance

and acoustic mass for the approximate model to predict the

acoustic impedance for a square, clamped, thin plate. It is

noted that the acoustic compliance is proportional to a6 for

square plates whereas it is proportional to r6 (r being the

radius) for circular plates.28

C. FEM model for the acoustic impedance of a square,
clamped plate

To verify the analytic and approximate models, a com-

mercial FEM package COMSOL is adopted to analyze the

vibration of a clamped plate under a certain surface pressure.

The solid-acoustic interaction module is used. As indicated

by Eq. (7), the acoustic impedance of the plate, Zam, can be

extrapolated using the average surface velocity and the net

pressure on the plate obtained from the FEM simulation. Two

distinct FEM models are used to achieve this goal. In the first

model, a boundary load is directly applied on the top surface

of the clamped plate. The net pressure is therefore F/a2, where

the F is force in Newton. In the second model, a waveguide is

created where clamped plates are placed inside in a periodical

manner [Fig. 1(a)]. A plane wave enters from one side and the

end of the waveguide is set up to be a non-reflecting bound-

ary. The acoustic pressures on two planes extremely close to

the plate are obtained in order to compute the net pressure.

These two models are denoted the FEM-boundary model and

FEM-waveguide model, respectively. For both FEM models,

convergence studies are carried out in order to ensure most

accurate results.

Consider a rubber plate (E¼10 MPa, v¼0:49 and

q¼1000 kg=m3) with dimensions a¼10 mm and h¼0:1mm

as a study case. The first resonance frequency of this plate is

at around 190 Hz. The length of the unit cell is 2mm. The

acoustic impedance can be calculated using the three differ-

ent methods presented above. Since in the FEM-waveguide

model, the plate number can be varied. We first examine

whether the number of plates (units) would change the calcu-

lated acoustic impedance. Figure 2 illustrates the acoustic

impedance obtained from the FEM-waveguide model with

various numbers of units. Only the imaginary part of the

acoustic impedance is shown since the real part is zero. Due

to the large computation, the maximum unit number consid-

ered here is three. In all three simulations, the acoustic

impedance is extracted for the first plate in the waveguide.

However, additional simulations show that the acoustic

impedances extracted from other plates (the second and the

third plate) are almost identical.

Figure 2 indicates that having multiple waveguide units

will not significantly affect the acoustic impedance of a

plate. This result is expected because the same plate with

the same boundary condition should have identical acoustic

FIG. 1. (a) Schematic of a single unit cell with a length d for plate- or

membrane-type AMMs without mass attached. (b) The lumped model for

plate- or membrane type AMMs. Zam represents the acoustic impedance of

the plate or membrane.
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impedance as long as the excitation conditions (uniform

pressure on the plate) are also the same.

Figure 3 shows the comparison among different models

for the acoustic impedance. One can observe slight discrep-

ancy between the analytic and simulation (FEM) results,

which is possibly caused by the approximations in the flex-

ural wave equation for a thin plate and inevitable numerical

errors in FEM. Because the lumped model is accurate only

around and below the resonance frequency,28 the approxi-

mate model becomes less accurate when the frequency is

significantly higher than the resonance frequency (190 Hz).

At low frequencies, the approximate model agrees very well

with the analytic model. Around the resonance frequency,

the acoustic impedance is near zero, as expected. The phase

difference between the net pressure on the plate and vibrat-

ing velocity changes by 180� as the frequency transitions

from below x11 to above x11, so that the impedance transi-

tions from being negative to positive.

D. Effective density

Since the wavelength of the incident sound wave is

much larger than the unit size, the AMM [Fig. 1(a)] can be

regarded as an effective homogeneous media whose effec-

tive density qeff can be evaluated. Under the low frequency

approximation, the lumped model28 [Fig. 1(b)] can be

employed to predict the effective density of the AMMs. The

acoustic medium can be approximated by a shunt acoustic

compliance (Ca) and a series acoustic mass (Ma), which are

given by

Ma ¼
q0

a2
d; Ca ¼

a2

K
d; (14)

where q0 is the density of the acoustic medium and is chosen

as air (1:2 kg=m3) in this study; K is the bulk modulus of

the acoustic medium and d is the length of a unit cell assum-

ing the thickness of the plate/membrane is negligible.

Otherwise the length of the unit cell is d þ h. When the rub-

ber plate vibrates, the surrounding acoustic medium will

behave like added mass to resist the vibration so that Zam is

in series with Ma.

The effective density (qeff ) of this waveguide unit can

be obtained as28

qeff ¼
jxMa þ Zamð Þa2

jxd
: (15)

Substituting Eqs. (9), (10), (13), and (14) into Eq. (15), an

approximate model for predicting the effective density can

be established and the equation reads

qeff ¼ q0 �
2:68� 103D

x2a4d
þ 2:06qh

d
: (16)

To verify the accuracy of the lumped model, a finite-

difference approximation method11,22,31 is used to retrieve

the effective density for the structure shown in Fig. 1(a). In

this approach, the FEM is first used to compute the sound

field in the waveguide and the calculated pressure and veloc-

ity are used to estimate the effective density. This approach

is denoted the FEM-finite difference approach. Starting from

the 1D Euler’s equation, the pressure p and the velocity v are

related by

dp

dx
¼ �jxqeffv: (17)

Assuming the unit cell size is considerably smaller than one

wavelength, Eq. (17) can be rewritten using the finite-

difference approximation as

Dp

d
¼ �jxqeff

�V ; (18)

where Dp ¼ p1 � p2; p1 and p2 are the pressures at the right

end and left end of the unit cell, respectively; �V is the aver-

age transverse velocity on the plate. By using Dp and �V
obtained from FEM simulations, the effective density can be

calculated as

FIG. 2. (Color online) The acoustic impedances predicted by the FEM

waveguide model with one, two, and three unit cells, respectively.

FIG. 3. (Color online) The acoustic impedances predicted by the analytic

model, approximate model, FEM-boundary model, and FEM-waveguide

model.
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qeff ¼
Dp

d

j

x �V
: (19)

Figure 4(a) shows the effective density predicted by

the analytic model, approximate model, and the FEM-finite

difference model. Only the real part of the density is shown

as the imaginary part is negligible (exactly equal to zero in

the analytic and approximate models). For the FEM-finite

difference model, the number of unit cells varies from one to

three. Similar to the acoustic impedance case, no significant

change is observed. The analytic and approximate models

agree well with the FEM-finite difference model. The slight

discrepancy is expected as they do not produce exactly the

same acoustic impedance as that predicted by the FEM mod-

els (Fig. 3). When the frequency is below the first resonance

frequency of the square clamped plate (around 190 Hz), the

effective density is negative. This is because the velocity is

90� out of phase with the acceleration (a) and therefore the

acceleration is 180� out of phase with the pressure/force (F).

By forcing the Newton’s second law F¼ma, m must be

negative. When the frequency is above the first resonance

frequency, the unit vibrates reversely (180� phase change)

and the net pressure on the unit is in phase with the vibra-

tional acceleration of the plate and the effective density

becomes positive. It is worthwhile to mention that, a simple

equation has been proposed to predict the effective density

of plate- or membrane-type AMMs without mass attached,

which reads22

q0eff ¼ q 1� xc
2

x2

� �
: (20)

This equation, however, predicts the effective density

of the vibrating plate or membrane alone without consider-

ing the fluid in the waveguide, whereas we took both the

plate and the fluid in the waveguide into account and treated

them as a homogenized medium to evaluate the effective

density. The effective density predicted by Eq. (20) can be

seen in Fig. 4(b), which is dramatically different from those

in Fig. 4(a), although they both show near-zero density

around the resonance frequency.

The next case considers the effect of damping of the

plate. The damping is taken into account ad hoc by consider-

ing a loss factor a so that the Young’s modulus of the plate

becomes a complex number, i.e., E0 ¼ Eð1þ jaÞ. This E0

is used to calculate the flexural rigidity D, which further

leads to the acoustic impedance and the effective density

using Eqs. (15) and (16). Two values of frequency indepen-

dent loss factor are considered, i.e., 0.1 and 0.3. The real part

of effective density, shown in Fig. 5(a), remains the same as

the case without considering the damping. As the loss factor

increases, the magnitude of the imaginary part of effective

density also increases as shown in Fig. 5(b). In addition, the

imaginary part of the effective density is always negative

which introduces further energy loss to the sound transmis-

sion. It is noted that the sign of the imaginary part of the den-

sity depends on whether ejxt or e�jxt is used. In the cases

studied, the imaginary part of the density is on the same

order to the real part of the density, therefore the damping

effect cannot be ignored for a on the order of 0.1, which is

common for polymeric materials.

To further validate the predicted effective density, trans-

mission coefficients through plate-type AMMs are also

FIG. 4. (Color online) The effective den-

sity of the plate-type AMM. (a) Results

produced from three different models.

(b) Results predicted from Eq. (20).

FIG. 5. (Color online) The effect of

the loss factor a on the effective den-

sity. a is chosen as 0.1 and 0.3. (a)

Real part of the effective density. (b)

Imaginary part of the effective density.
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computed and compared among different models. The pres-

sure reflection and transmission coefficients through a homo-

geneous medium are given by32

R ¼ Zm
2 � Z0

2

Z0
2 þ Zm

2 þ 2jZ0Zmcot /ð Þ ;

T ¼ 1þ R

cos /ð Þ � Zmj sin /ð Þ
Z0

; (21)

where Zm(¼ qeffceff ) is the characteristic impedance of

the waveguide. ceff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Beff=qeff

p
; where Beff is the effec-

tive bulk modulus and ceff is the effective speed of

sound. It was shown that membranes/plates in the wave-

guide do not alter the effective bulk modulus of the

medium so that Beff is the same as the bulk modulus of

air.33 However, it should be kept in mind that, this is not

strictly true for all cases. For instance, if the waveguide

is largely composed of membranes/plates in volume, or

if the background medium is something other than air,

the modulus of membranes/plates may have a non-trivial

effect on Beff . Z0 ¼ q0c0 is the characteristic impedance

of the air. / ¼ �2pfnd=ceff is the phase change of the

sound through the medium where n is the number of unit

cells and nd is the total length of the AMM. If the plate

thickness h is not negligible, d has to be replaced by

dþ h.

Using the qeff predicted from the analytic and

approximate models, the transmission coefficients of the

plate-type AMMs can be calculated. To verify the results,

the transmission coefficients are directly computed using

FEM. Figure 6 shows the transmission coefficient of a

three unit plate-type AMM. Figure 6(a) shows the results

without considering the damping whereas Fig. 6(b) shows

the results with damping. Three different models agree

very well over the frequency range under consideration.

This also indicates that the presence of the plates indeed

does not change the bulk modulus as assumed earlier.

When there is no damping, the transmission coefficients

reach the peak (1.0) at the resonance frequency as

expected. With the presence of the damping, the transmis-

sion coefficients are reduced due to the energy loss in the

plate. In both cases, the approximate model becomes less

accurate at a frequency significantly higher than the reso-

nance frequency.

III. EFFECTIVE DENSITY OF MEMBRANE-TYPE
ACOUSTIC METAMATERIALS WITHOUT MASS
ATTACHED

This section focuses on the membrane-type AMMs.

Similarly, the analytic model, approximate model, and the

FEM model are developed to predict the acoustic impedance

as well as the effective density.

A. Analytic model for the acoustic impedance of a
square, clamped membrane

The governing equation of the transverse displacement

W1ðx; y; tÞ of a pre-stretched membrane under the net pres-

sure P1ðx; y; tÞ is34

T1r2W1 x;y; tð Þ�q1h1

@2W1 x;y; tð Þ
@t2

¼�P1 x;y; tð Þ; (22)

where T1 is the uniform tension per unit length; q1 and h1

are the density and thickness of the membrane, respectively.

Assuming time-harmonic solutions, i.e., P1ðx; y; tÞ
¼ p1ðx; yÞejxt, W1ðx; y; tÞ ¼ w1ðx; yÞejxt, Eq. (22) leads to

r2w1 x; yð Þ þ b2w1 x; yð Þ ¼ �
p1 x; yð Þ

T1

; (23)

where b ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
q1=T1

p
is the wavenumber of the transverse

wave on the membrane.

The eigenfunction of a clamped square membrane is

well-known as34

u1mn x; yð Þ ¼ A1A3 sin
mpx

a

� �
sin

npy

a

� �
: (24)

After normalization, A1A3 ¼ 2=
ffiffiffiffiffiffiffiffiffi
q1a2

p
:

The resonance angular frequencies can be readily

derived as34

xmn ¼
p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1

q1

m2 þ n2ð Þ
s

: (25)

w1ðx; yÞ and p1ðx; yÞ can be expanded using u1mnðx; yÞ as

p1ðx; yÞ ¼
X1
m¼1

X1
n¼1

Qmnu1mnðx; yÞ;

w1ðx; yÞ ¼
X1
m¼1

X1
n¼1

w1mnu1mnðx; yÞ: (26)

FIG. 6. (Color online) The transmis-

sion coefficient of the plate-type AMM

with three unit cells. (a) Without con-

sidering the loss. (b) With loss factor

a: 0.1 and 0.3.
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Substituting Eq. (26) into Eq. (23), w1mn can be shown as

w1mn ¼
1

T1

Qmn

bmn
2 � b2

; (27)

where bmn ¼ xmn

ffiffiffiffiffiffiffiffiffiffiffiffi
q1=T1

p
and Qmn ¼

Ð a
0

Ð a
0

q1h1p1ðx;
yÞu1mnðx; yÞdxdy:

Similar to the case of plate-type AMMs in waveguides,

plane waves are assumed and p1ðx; yÞ ¼ p0 and Qmn becomes

Qmn ¼
2h1p0

ffiffiffiffiffi
q1

p

a

ða

0

ða

0

sin
mpx

a

� �
sin

npy

a

� �
dxdy

¼
2h1p0a

ffiffiffiffiffi
q1

p

mnp2
1� �1ð Þm
� �

1� �1ð Þn
� �

: (28)

Combining Eqs. (27) and (28) and then substituting the

resulting equation of w1mn into Eq. (26), w1ðx; yÞ can be

obtained as

w1 x; yð Þ ¼
X1
m¼1

X1
n¼1

4p0

q1h1 xmn
2 � x2ð Þmnp2

1� �1ð Þm
� �

� 1� �1ð Þn
� �

sin
mpx

a

� �
sin

npy

a

� �
:

(29)

Substituting Eq. (29) into Eq. (7), the acoustic imped-

ance of a clamped square membrane is analytically

written as

Zam1 ¼
1

jxa2
X1
m¼1

X1
n¼1

4

q1h1 xmn
2 � x2ð Þm2n2p4

1� �1ð Þm
� �2

1� �1ð Þn
� �2 : (30)

The summations are calculated numerically. Clearly,

even number modes (m, n¼ 2, 4, 6,…) do not contribute to

the acoustic impedance, because the uniform pressure on the

membrane does not excite those modes.

In contrast to plates, the acoustic impedance of the

clamped membranes does not relate to the flexural rigidity

(D) but rather the pre-stretched tension (T1). The membrane

model is only valid if the thickness is significantly smaller

than the width and the tension is sufficiently large so that the

effect of the tension dominates over that of the elasticity of

the membrane.

B. Approximate model for the effective density of a
square, clamped membrane

Similar to the case of plates, an approximate model for

the acoustic impedance of clamped, square membranes can

be derived and the acoustic compliance and mass are

Mam1 ¼ 1:44
q1h1

a2
; Cam1 ¼ 0:035

a4

T1

: (31)

To verify the analytic and approximate model for the

acoustic impedance, the two FEM models are again used for

verification. Figure 7 shows the results for the case where

a¼ 10 mm, h1¼ 35 lm, T1¼ 2 MPa; and d¼ 2 mm (this

number d is only used in the FEM waveguide model when

there are multiple membranes).

Similar to plates, only the imaginary part of the imped-

ance is shown here. The acoustic impedance of the mem-

brane is zero at the first resonance frequency (around

3162 Hz in this case) and is negative below that frequency.

The analytic and the two FEM models agree well throughout

the entire frequency range. The approximate model becomes

less accurate at frequencies above the resonance frequency.

The damping effect is not studied here for membranes

because it is expected to be negligible since the thickness is

extremely small. However, it is still possible to force the

damping by using a complex number for the tension.

C. Effective density

After obtaining the acoustic impedance, the effective

density can then be calculated by using Eq. (15). Substituting

Eq. (31) into Eq. (15), the equation for predicting the effec-

tive density from the approximate model reads

qeff1 ¼ q0 �
28:57T1

x2a2d
þ 1:44q1h1

d
: (32)

FIG. 7. (Color online) The acoustic impedance of a clamped square mem-

brane predicted by the analytic model, approximate model, FEM-boundary

model, and FEM-waveguide model.
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Figure 8 presents the effective density predicted by the

three different approaches. The FEM-finite difference

approach is used to verify the analytic and approximate

models. All models agree well below the resonance fre-

quency. Similar to the plate-type acoustic metamaterial, the

approximate model is less accurate above the resonance fre-

quency. However, the approximate model could still be

useful because the frequency of interest is typically below

the resonance frequency where the effective density is

negative.

Since for square, clamped membranes, a closed form

solution for the displacement can be found, the analytic

model is expected to be more accurate than that of

plates. Finally, Fig. 9 illustrates the sound transmission

coefficient for the membrane-type AMM as shown in

Fig. 1(a). Three unit cells are considered with a total

length 2� 3¼ 6 mm. Results from the three models are

in good agreement.

IV. CONCLUSION

This paper presents methods for predicting the effective

densities of plate- and membrane-type AMMs without mass

attached. The analytic model and the approximate model,

which is derived from the analytic model under the low fre-

quency approximation, are developed and their results are

compared with those from the FEM model. Good agreement

is found among these models when predicting the acoustic

impedance, effective density, and the transmission coeffi-

cients. Although the approximate model is only accurate at

frequencies below the first resonance frequency, it provides

a quick and reasonably accurate approach for predicting the

effective densities of plate- and membrane-type AMMs. The

influence of the loss factor of the plate on the effective den-

sity and transmission coefficient is investigated. The addition

of the loss factor introduces the imaginary part of the effec-

tive density and reduces the transmission coefficient. We

assume square plates and membranes in this work. The

framework we provide, however, can be applied to studying

rectangular plates and membranes. Future work will also

take the effect of the background medium/fluid into account.

This effect is expected to be more significant for plate- and

membrane-type AMMs in heavier media, e.g., water.
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